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Abstract

In this paper, the duality between descriptive frames and Heyting algebras is proved in
detail. This, together with the standard result on the completeness of intermediate log-
ics with respect to Heyting algebras, is used to obtain the completeness of intermediate
logics with respect to descriptive frames.
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1 Introduction

It is well known that propositional logics are complete with respect to the appropriate
algebraic semantics. For example, classical propositional logic (CPC) is complete with
respect to the class of Boolean algebras and intuitionistic propositional logic (IPC) is
complete with respect to the class of Heyting algebras. These proofs can be modified to
obtain similar results about certain classes of extensions. For example, every modal logic
(which can be considered an extension of CPC) is complete with respect to a certain class
of Boolean algebras with operators. And every intermediate logic (which is an extension
of IPC) is complete with respect to a certain class of Heyting algebras.

Some would prefer, however, completeness with respect to a frame-based semantics.
This can be done easily in the cases of CPC (which is complete with respect to the
single reflexive point) and IPC (which is complete with respect to Kripke frames). Similar
results can be obtained for particular extensions. (For example, S4, an extension of CPC,
is complete with respect to reflexive, transitive Kripke frames.) But this cannot be done
directly for all extensions, so a new method is needed. The new method relies on a broader
notion of frame which provides a link to the algebraic semantics. In the case of modal
logics, this notion is that of the general frame, and the link with algebraic semantics comes
in the form of the Stone Representation Theorem. The final result is that every modal
logic is complete with respect to a certain class of general frames.

The goal of this paper is to prove the result for intermediate logics analogous to the
one just mentioned for modal logics. That is, we will prove the completeness of interme-
diate logics with respect to frame-based semantics. We will do this by introducing the
notion of a descriptive frame, relating these to Heyting algebras, and then transferring the
completeness from the algebraic side to the frame-based side.

2 Preliminaries

In this section, we introduce the preliminary notions needed for the proof, along with some
results to be assumed.

2.1 Logics, Frames, and Algebras

We here recall some familiar definitions, mainly to set the notation for the rest of the paper.

Definition 2.1.1. The intuitionistic propositional calculus IPC is the smallest set of
formulas (of a propositional language L containing ∨,∧,→,⊥, and infinitely many propo-
sitional letters Prop) containing

1. p→ (q → p),

2. (p→ (q → r)) → ((p→ q) → (p→ r)),
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3. p ∧ q → p,

4. p ∧ q → q,

5. p→ p ∨ q,

6. q → p ∨ q,

7. (p→ r) → ((q → r) → ((p ∨ q) → r))),

8. ⊥ → p,

and closed under modus ponens and substitution.

The logics we will be concerned with in this paper are extensions of intuitionistic logic:

Definition 2.1.2. An intermediate logic is any consistent (i.e., not containg ⊥) logic (i.e.,
set of formulas closed under modus ponens and substitution) of L containing IPC.

The intuitive semantics for modal and intuitionistic logics is based on Kripke frames.

Definition 2.1.3. An intuitionistic Kripke frame is a pair F = (W,R) where R is a partial
order on W 6= ∅. An intuitionistic Kripke model is a pair M = (F, V ) where F = (W,R)
is a Kripke frame and V , an intuitionistic valuation, is a map from Prop to

Up(F) = {X ∈ P(W ) : w ∈ X ∧ wRv → v ∈ X},

the upsets of F.

The notions of truth and validity are standard, except for the implication clause of the
truth defintion.

Definition 2.1.4. We define by recursion ϕ is true in M at w (notation M, w |= ϕ):

1. M, w |= p iff w ∈ V (p),

2. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,

3. M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ,

4. M, w |= ϕ→ ψ iff for all v such that wRv, if M, v |= ϕ then M, v |= ψ,

5. M, w 6|= ⊥.

We say that ϕ is valid on a frame F, and write F |= ϕ, if (F, V ), w |= ϕ for every valuation
V and world w.

With the frame-based semantics in hand, we now recall the algebraic semantics.
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Definition 2.1.5. A structure A = (A,∨,∧,→,⊥,>) is a Heyting algebra iff A 6= ∅, ∨,
∧, and → are binary operations on A, and ⊥,> ∈ A such that for every a, b, c ∈ A:

(i) A is a bounded lattice:

1 . a ∨ a = a, a ∧ a = a,
2 . a ∨ b = b ∨ a, a ∧ b = a ∧ b,
3 . a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c,
4 . a ∨ ⊥ = a, a ∧ > = a,
5 . a ∨ (b ∧ a) = a, a ∧ (b ∨ a) = a,

(ii) A is distributive:

1. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
2. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

(iii) and → is Heyting implication:

1. a→ a = >,

2. a ∧ (a→ b) = a ∧ b,
3. b ∧ (a→ b) = b,

4. a→ (b ∧ c) = (a→ b) ∧ (a→ c).

A useful semantic characterization of Heyting implication is

c ≤ a→ b iff a ∧ c ≤ b

where a ≤ b iff a ∧ b = a (see [3, Theorem 7.10]). To define truth in a Heyting algebra
A, we define a valuation v : Prop → A and extend it to all formulas of L by the obvious
recursion. Then

Definition 2.1.6. ϕ is valid in A iff v(ϕ) = > for every valuation v.

One last notion that will be needed is that of a filter.

Definition 2.1.7. Let A be a Heyting algebra. A nonempty, proper subset F ⊂ A is a
filter of A if

1. a, b ∈ F implies a ∧ b ∈ F ,

2. a ∈ F and a ≤ b implies b ∈ F ,

and a prime filter if in addition:

3. a ∨ b ∈ F implies a ∈ F or b ∈ F .

4



A sometimes useful equivalent (see [3, Theorem 7.23]) definition of filter replaces conditions
1 and 2 with > ∈ F and

a ∈ F and a→ b ∈ F implies b ∈ F.

We state here a result, sometimes referred to as the Prime Filter Theorem, about filters
that will be needed in §3. It is a minor generalization of [3, Theorem 7.41].

Proposition 2.1.8. Let F be a filter of A and X ⊂ A such that F ∩X = ∅. Then there
is a prime filter F ′ of A such that F ⊆ F ′ and F ′ ∩X = ∅.

2.2 Algebraic Completeness

We can associate to each intermediate logic L the class VL of those Heyting algebras in
which all theorems of L are valid. VL will be a variety by Birkhoff’s Theorem, which states
that a class of algebras is equationally defined iff it is a variety. Then, by a Lindenbaum-
Tarski type construction, the following can be proved (as in [3, Theorem 7.73(iv)]).

Theorem 2.2.1. Every intermediate logic L is sound and complete with respect to VL.

This gives us the completeness with respect to algebraic semantics that we will try to
transfer to the frame-based semantics. Before we can do that, though, we must define the
frame-based semantics.

2.3 Descriptive Frames

We define here the notion that will give us an adequate frame-based semantics for com-
pleteness. It is a generalization of the Kripke frame:

Definition 2.3.1. An intuitionistic general frame is a triple F = (W,R,P) where (W,R)
is a Kripke frame, P ⊆ Up(F) containing ∅ and W , and P is closed under ∪, ∩, and →
defined by

U1 → U2 := {w ∈W : ∀v(wRv ∧ v ∈ U1 → v ∈ U2)} = W\R−1(U1\U2),

where R−1(U) =
⋃

w∈U{v ∈W : vRw}.
Definition 2.3.2. An intuitionistic descriptive frame is a general frame that is refined
and compact, where:

1. F is refined if for every w, v ∈ W, ¬(wRv) implies that there is U ∈ P such that
w ∈ U and v 6∈ U , and

2. F is compact if for every X ⊆ P and Y ⊆ {W\U : U ∈ P}, if X ∪ Y has the finite
intersection property then

⋂
(X ∪ Y) 6= ∅.

Definition 2.3.3. An intuitionistic descriptive model is a pair M = (F, V ) such that
F = (W,R,P) is a descriptive frame and V : Prop → P.

Truth and validity are defined as usual.
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3 Duality

In this section, we prove a duality theorem for Heyting algebras and descriptive frames.
This will provide us with the link needed to infer frame-based completeness from algebraic
completeness.

3.1 From Frames to Algebras

We first define an operator ∗ from descriptive frames to Heyting algebras.

Definition 3.1.1. Let F = (W,R,P) be a descriptive frame. Then F∗ := (P,∪,∩,→, ∅,W )
(where → is the operation on P defined in the previous section).

Lemma 3.1.2. For every descriptive frame F, F∗ is a Heyting algebra.

Proof. That F∗ is a distributive lattice follows directly from the fact that any set of sets
forms a distributive lattice. So we only need to show that → satisfies the axioms for
Heyting implication. Let X,Y, Z ∈ P ⊂ Up(F).

1. a→ a = >:

X → X = W\R−1(X\X)
= W\R−1(∅)
= W\∅
= W.

2. a ∧ (a→ b) = a ∧ b:

X ∩ (X → Y ) = X ∩ (W\R−1(X\Y ))
= X\R−1(X\Y )
= X ∩ Y.

To see that the last equality holds, notice that if w ∈ X∩Y , then u ∈ Y if wRu, since
Y is an upset. So ¬wRu for any u ∈ X\Y . For the other containment, let w ∈ X
and w 6∈ R−1(X\Y ). Then w 6∈ X\Y , since R is reflexive, showing that w ∈ Y .

3. b ∧ (a→ b) = b:

Y ∩ (X → Y ) = Y ∩ (W\R−1(X\Y ))
= Y \R−1(X\Y )
= Y,

where the last equality holds because Y ∩R−1(X\Y ) = ∅, since Y is an upset.
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4. a→ (b ∧ c) = (a→ b) ∧ (a→ c):

W\R−1(X\(Y ∩ Z)) = W\R−1((X\Y ) ∪ (X\Z))
= W\(R−1(X\Y ) ∪R−1(X\Z))
= W\R−1(X\Y ) ∩W\R−1(X\Z)
= (X → Y ) ∧ (X → Z).

The second equality holds because

w ∈ R−1((X\Y ) ∪ (X\Z)) iff ∃u ∈ (X\Y ) ∪ (X\Z) : wRu
iff ∃u ∈ X\Y : wRu or ∃u ∈ X\Z : wRu
iff w ∈ R−1(X\Y ) or w ∈ R−1(X\Z).

Therefore F∗ is a Heyting algebra.

Note that we didn’t use that A was descriptive. This works for general frames as well, but
the importance of using descriptive frames will become clear in the proof of Theorem 3.3.1.

3.2 From Algebras to Frames

Now we define an operator ∗ in the other direction.

Definition 3.2.1. Let A = (A,∨,∧,→,⊥,>) be a Heyting algebra.

1. WA = {F ⊂ A : F is a prime filter of A},

2. FRAF
′ iff F ⊆ F ′,

3. PA = {â : a ∈ A} where â = {F ∈WA : a ∈ F}.

Then A∗ := (WA, RA,PA).

Lemma 3.2.2. For every Heyting algebra A, A∗ is a descriptive frame.

Proof. That RA is a partial order, and hence that FA := (WA, RA) is a Kripke frame,
follows directly from the fact that ⊆ is a partial order on sets. If F ∈ â and FRAF

′, then
a ∈ F and F ⊆ F ′, and so a ∈ F ′ and F ′ ∈ â. So each â is an upset of FA, giving us
PA ⊆ Up(FA). Because filters are upsets, ⊥ 6∈ F (else F = A, contradicting that filters are
proper) and > ∈ F (else F = ∅, contradicting that filters are nonempty) for every (prime)
filter F . Thus ⊥̂ = ∅ and >̂ = WA are in PA.
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We next have to check that PA is closed under ∪, ∩, and →. Let â, b̂ ∈ PA. Then

â ∪ b̂ = {F ∈WA : a ∈ F} ∪ {F ∈WA : b ∈ F}
= {F ∈WA : a ∈ F or b ∈ F}
= {F ∈WA : a ∨ b ∈ F}
= â ∨ b
∈ PA,

where the third equality holds because F is a prime filter. Also

â ∩ b̂ = {F ∈WA : a ∈ F} ∩ {F ∈WA : b ∈ F}
= {F ∈WA : a ∈ F and b ∈ F}
= {F ∈WA : a ∧ b ∈ F}
= â ∧ b
∈ PA,

where the third equality holds because F is a filter. And in the definition of descriptive
frame, we defined → precisely to make the following work:

â→ b̂ = {F ∈WA : ∀F ′(FRAF
′ ∧ F ′ ∈ â→ F ′ ∈ b̂)}

= {F ∈WA : ∀F ′(F ⊆ F ′ ∧ a ∈ F ′ → b ∈ F ′)}
= â→ b

∈ PA.

To show the right is contained in the left in the last equality, let F ∈ â→ b and suppose
that F ⊆ F ′ with a ∈ F ′. Then, as a → b ∈ F , a → b ∈ F ′. And so, as F ′ is a filter
containing a, b ∈ F ′. Thus F ∈ {F ∈ WA : ∀F ′(F ⊆ F ′ ∧ a ∈ F ′ → b ∈ F ′)}. For the
reverse containment, let F ∈ {F ∈ WA : ∀F ′(F ⊆ F ′ ∧ a ∈ F ′ → b ∈ F ′)}. We want to
show that a → b ∈ F . If b ∈ F , then a → b ∈ F , so we suppose b 6∈ F . If there is c ∈ F
such that c ∧ a = 0, then c ∧ a ≤ b, so c ≤ a → b by the semantic characterization of →,
and so a→ b ∈ F . So assume there is no such c. Let Fa be the filter generated by F and
a.1 This exists since c ∧ a 6= 0 for every c ∈ F by assumption. If b 6∈ Fa, then there is a
prime filter F ′ extending Fa with b 6∈ F ′ (by Proposition 2.1.8). Since F ⊆ Fa ⊆ F ′ and
a ∈ F ′, b ∈ F ′ (by our original supposition about F ), a contradiction. So b ∈ Fa. That is,
there is a c ∈ F such that c ∧ a ≤ b. Then c ≤ a→ b, by the semantic characterization of
→, and so a→ b ∈ F , since filters are upsets. Therefore, F ∈ â→ b.

1If the closure under ∧ of the set {a ∈ A : ∃x ∈ X(x ≤ a)} is a proper subset of A, then it is a filter
called the filter generated by X and denoted [X).
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Thus A∗ is a general frame. It remains to show that it is descriptive. To see that A∗
is refined, suppose that ¬(FRAF

′), that is F 6⊆ F ′. Then there is an a ∈ A such that
a ∈ F ∧ a 6∈ F ′. So there is an â ∈ PA such that F ∈ â ∧ F ′ 6∈ â.

For compactness, let X ⊆ PA, Y ⊆ {WA\b̂ : b̂ ∈ PA}, and X ∪ Y have the finite
intersection property. We want to show

⋂
(X ∪ Y) 6= ∅. Let F = [{a : â ∈ X}) be the

filter in A generated by those a ∈ A such that â ∈ X and I = ({b : WA\b̂ ∈ Y}] the ideal2

generated by those b ∈ A such that WA\b̂ ∈ Y. To see that F is a proper subset of A,
and hence exists, suppose not. Then there are â1, . . . , ân ∈ X such that a1 ∧ · · · ∧ an = 0.
But then â1 ∩ · · · ∩ ân = ∅, contradicting that X ∪ Y has the finite intersection property.
Similarly, I is a proper subset since, if not, then there are WA\b̂1, . . . ,WA\b̂m ∈ Y such
that b1 ∨ · · · ∨ bm = 1. But then b̂1 ∪ · · · ∪ b̂m = WA, and so WA\b̂1 ∩ · · · ∩WA\b̂m = ∅,
again contradicting that X ∪ Y has the finite intersection property.

So F is a filter and I is an ideal. We now show they are disjoint. Suppose a ∈ F ∩ I.
Then, since a ∈ F , there are â1, . . . , ân ∈ X such that a1 ∧ · · · ∧ an ≤ a. Also, since a ∈ I,
there are WA\b̂1, . . . ,WA\b̂m ∈ Y such that b1 ∨ · · · ∨ bm ≥ a. So

â1 ∩ · · · ∩ ân = ̂a1 ∧ · · · ∧ an

⊆ â

⊆ ̂b1 ∨ · · · ∨ bm
= b̂1 ∪ · · · ∪ b̂m
= WA\(WA\b̂1 ∩ · · · ∩WA\b̂m).

But then â1 ∩ · · · ∩ ân ∩WA\b̂1 ∩ · · · ∩WA\b̂m = ∅, contradicting that X ∪Y has the finite
intersection property. So F ∩ I = ∅, and we can apply the Prime Filter Theorem to get a
prime filter F ′ of A such that F ⊆ F ′ and F ′ ∩ I = ∅.

It is this F ′ we will show to be in
⋂

(X ∪ Y), completing the proof. Let â ∈ X . Then
a ∈ F by the definition of F , and so a ∈ F ′ since it contains F , giving us F ′ ∈ â. Now
let WA\b̂ ∈ Y. Then b ∈ I by the definition of I, and so b 6∈ F ′ since it is disjoint from I,
giving us F ′ 6∈ b̂ and thus F ′ ∈ WA\b̂. So F ′ ∈

⋂
(X ∪ Y). Thus

⋂
(X ∪ Y) 6= ∅, so A∗ is

compact and therefore a descriptive frame.

3.3 Back and Forth

Results analogous to the previous two lemmas hold for regular Kripke frames. But what
we gain with the added generality of descriptive frames is that every Heyting algebra can
be obtained from a descriptive frame via the ∗ operation, and, vice versa, every descriptive
frame can be obtained from a Heyting algebra via ∗. This fact, plus some extra symmetry,
is expressed by the following duality.

2An ideal is a nonempty, proper subset F of a Heyting algebra A such that (1) a, b ∈ F implies a∨b ∈ F ,
and (2) a ∈ F and a ≥ b implies b ∈ F . The ideal generated by a set X, which is defined analogously to
the filter generated by a set, but replacing ∧ by ∨ and ≤ by ≥, is denoted by (X].
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Theorem 3.3.1. Let A be a Heyting algebra and F a descriptive frame. Then

1. A ∼= (A∗)∗,

2. F ∼= (F∗)∗.

Proof. For part 1, we define a map f : A → (A∗)∗ by

f(a) = â.

f is bijective since the map from a to â is a bijection between A and PA, which is the
domain of (A∗)∗. The proof that f is a homomorphism is contained in the proof of Lemma
3.2.2. From that proof, we get the second equality in each of the following:

f(⊥) = ⊥̂ f(>) = >̂
= ∅ = WA

and

f(a ∨ b) = â ∨ b f(a ∧ b) = â ∧ b f(a→ b) = â→ b

= â ∪ b̂ = â ∩ b̂ = â→ b̂
= f(a) ∪ f(b) = f(a) ∩ f(b) = f(a) → f(b).

So f is an isomorphism.
For part 2, we define a map g : F → (F∗)∗ by

g(w) = ŵ = {U ∈ P : w ∈ U}.

We start by showing that g(w) ∈WF∗ , that is, that ŵ is a prime filter of F∗. By definition,
ŵ ⊆ P. Since w 6∈ ∅ and w ∈ W , we have ∅ 6∈ ŵ and W ∈ ŵ. Let X,Y ∈ ŵ. Then
w ∈ X,Y . So w ∈ X ∩ Y , giving X ∩ Y ∈ ŵ. Now let X ∈ ŵ and X ⊆ Y . Then
w ∈ X ⊆ Y , so Y ∈ ŵ. Now let X ∪ Y ∈ ŵ. Then w ∈ X ∪ Y . So w ∈ X or w ∈ Y ,
and hence X ∈ ŵ or Y ∈ ŵ. So ŵ is an element of WF∗ . To see that g is injective, let
w 6= v. Then either ¬(wRv) or ¬(vRw), since Kripke frames are partial orders. Without
loss of generality, assume the first. Then, since F is descriptive and hence refined, there is
an upset U ∈ P such that w ∈ U and v 6∈ U . Then U ∈ ŵ and U 6∈ v̂, giving us ŵ 6= v̂.
We now show that g is a homomorphism: wRv iff every upset in P containing w contains
v iff ŵ ⊆ v̂ iff ŵRF∗ v̂ (where the first equivalence holds from right to left because F is
refined). To show that g is a homomorphism, we must also prove that for every U ⊆ W ,
U ∈ P iff g(U) ∈ PF∗ . Note that PF∗ = {{ŵ : w ∈ U} : U ∈ P}. Then U ∈ P implies
g(U) = {ŵ : w ∈ U} ∈ PF∗ . And g(U) ∈ PF∗ implies g(U) = {ŵ : w ∈ U ′} for some
U ′ ∈ P. But then g(U) = g(U ′), and so U = U ′ since g is injective. So U ∈ P.

It remains to show that g is surjective. This is where that fact that F is descriptive,
and compact in particular, is essential. We must show that every element of WF∗ is of

10



the form ŵ for some w ∈ W . So let X ∈ WF∗ . Then X is a prime filter in F∗. Then
Y = P\X is a prime ideal, and so

⋃
Y0 6= W for any finite subset Y0 ⊆ Y. We will show

that the set X ∪ Y ′ has the finite intersection property, where Y ′ = {W\Y : Y ∈ Y}. Let
Z = X1 ∩ · · · ∩ Xn ∩ Y1 ∩ · · · ∩ Ym where each Xi ∈ X , Yi ∈ Y ′. Let X and Y be the
intersections of the Xi and Yi, respectively. Then X ∈ X , since X is a filter, and Y ∈ Y ′

since W\Y ∈ Y (since Y is an ideal). If Z = ∅, then X ⊆ W\Y ∈ Y. Since X is a filter,
this gives W\Y ∈ X , yielding X ∩ Y 6= ∅, contradicting the definition of Y. So Z 6= ∅,
showing that X ∪ Y ′ has the finite intersection property. Since F is descriptive and hence
compact, there is a w ∈

⋂
(X ∪ Y ′). Finally, we show that X = ŵ. Let U ∈ P . If U ∈ X ,

then w ∈
⋂

(X ∪ Y ′) ⊆ U , so U ∈ ŵ, giving X ⊆ ŵ. Now let U ∈ ŵ. So w ∈ U . Suppose
U ∈ Y. Then W\U ∈ Y ′ giving w 6∈

⋂
Y ′, contradicting w ∈

⋂
(X ∪Y ′). So U ∈ X , giving

ŵ ⊆ X . Thus X = ŵ, establishing that g is surjective, and therefore an isomorphism.

4 Completeness

This section contains the final result. Having obtained a link between the algebraic and
frame-based semantics, we can obtain the more intuitive version of completeness we have
been looking for.

Lemma 4.0.2. Let A be a Heyting algebra. Then

A, v |= ϕ iff A∗, v∗ |= ϕ,

where v∗(p) = v̂(p).

Proof. We first prove that v∗(ϕ) = v̂(ϕ) for all formulas by induction on ϕ:

Prop: v∗(p) = v̂(p) by definition.

∧:

̂v(ϕ ∧ ψ) = ̂v(ϕ) ∧ v(ψ)

= v̂(ϕ) ∩ v̂(ψ)
= v∗(ϕ) ∩ v∗(ψ)
= v∗(ϕ ∧ ψ)

∨:

̂v(ϕ ∨ ψ) = ̂v(ϕ) ∨ v(ψ)

= v̂(ϕ) ∪ v̂(ψ)
= v∗(ϕ) ∪ v∗(ψ)
= v∗(ϕ ∨ ψ)
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→:

̂v(ϕ→ ψ) = ̂v(ϕ) → v(ψ)

= v̂(ϕ) → v̂(ψ)
= v∗(ϕ) → v∗(ψ)
= v∗(ϕ→ ψ)

where the second equality of each induction step was proved in Lemma 3.2.2. Using this,
we get that

A, v |= ϕ iff v(ϕ) = >
iff v∗(ϕ) = >̂ = {F ⊂WA : > ∈ F} = WA

iff A∗, v∗ |= ϕ

since every (prime) filter is a nonempty upset and hence contains the top element >.

Notice that this lemma only makes sense given the correspondence between descriptive
frames and Heyting algebras proved in the previous section. Combining this lemma with
the algebraic completeness theorem of §2 will give us the desired result. For a class of
algebras C, we write C∗ := {A∗ : A ∈ C}.

Theorem 4.0.3. Every intermediate logic L is sound and complete with respect to (VL)∗.

Proof. Let L be an intermediate logic. Then

L ` ϕ iff VL |= ϕ (1)
iff A |= ϕ for every A ∈ VL (2)
iff A, v |= ϕ for every A ∈ VL and valuation v (3)
iff A∗, v∗ |= ϕ for every A∗ ∈ (VL)∗ and valuation v∗ (4)
iff A∗ |= ϕ for every A∗ ∈ (VL)∗ (5)
iff (VL)∗ |= ϕ. (6)

(1) is just the algebraic completeness theorem from §2.2, (4) follows from the previous
lemma, and the rest follow from the definition of |=. So provability in L corresponds with
validity in the class (VL)∗.

Thus we have shown that every intermediate logic is complete with respect to a class of
descriptive frames. That is, we have found our complete frame-based semantics.
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5 Conclusion

The result from the previous section has fulfilled three goals for us. The first goal achieved
is the one explicitly stated in the introduction. We have shown that a class of logics is
complete with respect to an intuitively appealing semantics. Second, we have rounded out
the picture of completeness results for propositional logics. We had algebraic and frame-
based results for CPC, its extensions, and IPC. But we had only an algebraic result
for the extensions of IPC. Theorem 4.0.3 gives the eighth result, completing the picture.
And finally, we have seen the usefulness of analyzing the same object or phenomena from
different frameworks. Through the duality result of §3, we were able to harness the power
of the algebraic approach to obtain the desired intuitive frame-based result of §4.
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